
AD-AOBA 369 WISCONSIN UNhy-MADISON MATHEMATICS RESEARCH CENTER F/B 12/1

CONdVERGENCE ESTIMATES FOR SEMIDISCRETE PARABOLIC EQUATION APPRO-SETC(U)

UNLSIID MRC-TSR25-EESOP SMM EE AA2975EE02E~hEEEEEEEEEE""CASIFEDI""'--05 N
rU..AASIENDmEEEEEI7



MRC Technical Summary Report # 2053

C ) CONVERGENCE ESTIMATES FOR SEMIDISCRETE
CPARABOLIC EQUATION APPROXIMATIONS

Peter H. Sammon

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706

March 1980

DTIC
ELECTE

_ JUL I 1 1980

(Received August 7, 1979) S J

Approved for public release
Distribution unlimited

C_> Sponsored by

wU. S. Army Research Office and National Science Foundation
-. P. 0. Box 12211 Washington, D. C. 20550
L.LiResearch Triangle Park

orth Carolina 27709 i807



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

/ N~1

AONVERGENCEJESTIMATES FOR--EMIDISCRETE
PARAFULIC iQrJATION APPROXIMATIONS,

7m his ~ Tchni cal umr ep ,>2 ''' ''"

In this paper, we study certain semidiscrete methods for approximating the

solutions of initial boundary value problems, with homogeneous boundary condi-

tions, for certain kinds of parabolic equations. These semidiscrete methods

are based upon the availability of several different Galerkin-type approxima-

tion methods for the associated elliptic steady-state problem. The properties

required of the spacial discretization methods are listed and estimates of the

error made by the resulting semidiscrete approximations and of its time deriva-

tives are given. In particular, estimates are given that require only weak

smoothness assumptions on the initial data. Verifications of the required

properties for various Galerkin-type methods are also given.

1,j

AMS(MOS) Subject Classification: Primary 65M15, Secondary 65N30

Key Words: Parabolic Equations, Semidiscrete Approximations, Galerkin
Methods

Work Unit Number 7 - Numerical Analysis

Sponsored by the United States Army under Contract No. DAAG29-75-C-l024. This

material is based upon work supported by the National Science Foundation tinder
Grant No. MCS78-09525. iU

... .. . .. ... . .. .. ." .',-'- <- ... . -, ,,.,+... ,. ,1..I._ , :'-, l # , i



SIGNIFICANCE AND EXPLANATION

Many physical situations can be modelled by the solutions of initial

boundary value problems for parabolic partial differential equations. Examples

of such situations arise in the theory of heat conduction and other diffusion

processes. The physical parameters involved are often dependent on the time

variable.

The construction of semidiscrete approximations to the solution of such

parabolic equations is studied in this paper. These approximations arise from

certain spacial discretization techniques and they are governed by ordinary

differential equations. Estimates for the approximation errors are given for

various classes of initial data, including classes that require only weak

smoothness assumptions.
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CONVERGENCE ESTIMATES FOR SEMIDISCRETE
PARABOLIC EQUATION APPROXIMATIONS

Peter H. Sammon

I. Introduction

Let 2 be a bounded domain in d-dimensional Euclidean space with a sufficiently

smooth boundary 3Q and an outward pointing normal n(x) = (n1, • n ) . Let
d

T > 0. We shall consider semidiscrete Galerkin-type approximations to the solution of

the following parabolic initial boundary value problem:

d d
-u = L(t)u D - . (a. . (x,t)D.u) + a 0i(x,t)D uti,j=l 1 1] i=l Qi

(1.1) (i)

+ a (x,t)u in n X (O,T]

under one of the following boundary conditions:

d
(i.i)(ii) u(x,t)[ = 0 or a. .(x,t)n (x)D.u(x,t) = 0, for 0 < t < Tlao i,j=l '3 1 ] ao -

and with the following initial condition, where v is a known function:

(1.1) (iii) u(x,O) = v(x) for x E CQ

(All functions considered in this paper will be real valued). We will put various

kinds of restrictions on the initial data function v later, as well as a coercivity

d d

assumption on the coefficients of L. We will assume that {a.. , {a and
Si,j= 1  i=l

are sufficiently smooth functions on x [0,7 -, that a.. = a.. for 1 < i, j < d

d
and that the matrices [a ij] form a uniformly positive definite family on

'i,j=l

[O,t]. If the Neumann boundary conditions are under consideration, we shall also

assume that

aij(x,t) = a(x,t)a. (x) for 1 < i,j < d and (x,t) c x [O,r]

(1.2)

a (x,t) - 0 for 0 < t < T

OiIL
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d
where [aij (x)] is a symmetric matrix of sufficiently smooth functions on Q

i, j=l

and A(x,t) is a sufficiently smooth function on 5 x [O,T].

Suppose we consider the following elliptic boundary value problem associated

with (1.1): Given 0 < t < T and a suitable function f, find a function w which

satisfies L(t)w = Lw = f on 0 and the appropriate homogeneous boundary condi-

tions on 30. There are many well studied techniques for finding an approximation,

in a finite element space, to the solution of this problem (see the surveys in (2]

or [3], for instance). Moreover, the authors of [3] have shown that it is possible

to take such a technique and use it to generate a time continuous family of approxima-

tions to a solution of (1.1), at least if L has time independent coefficients.

They proved that this semidiscrete approximation to (1.1) can be a good one at

positive times, even if the initial data function v is not smooth on n or does

not satisfy suitable boundary compatibility conditions. This indicates that the

smoothing property of the parabolic problem can be utilized. (It is known that

solutions of (1.1) are smooth in space and time for positive times, even if v is

not smooth and compatible in space). They also proved uniform in time results for

naturally restricted classes of initial data.

We intend to study the case of time dependent non-selfadjoint operators in this

paper and show that many of the results of [3] are still valid, under similar

hypotheses on the data of the problem. We will begin by setting some notation and

then we will describe some results concerning the smoothing properties of the problem

given by (1.1). (These results are known, but we shall give some derivations that

will allow us to prove similar results for the discrete setting). We will then make

some abstract hypotheses concerning finite element approximations to the associated

elliptic problem, define the semidiscrete approximation and prove (optimal order)

convergence results for restricted classes of smooth initial data as well as for

nonsmooth initial data. It will then be shown that many of the known Galerkin-type

-2-



approximations satisfy the abstract conditions. All of these estimates will be done

in a L 
2 (
C)-setting but we will conclude by discussing some error estimates in the

maximum norm.

We refer the reader to [31 for a discussion of related work done by other

authors. This work represents an extension of work done in [8] under the supervision

of Professor J. H. Bramble.

We conclude this Section with an observation concerning scaling arguments. If

u(t) is a solution of (1.1) then w(t) e-u(t) is a solution of the following

evolution equation:

w (t) + (L(t) + K)w(t) = 0t

for any K 1R. This relation, as well as a similar one which will hold for the

semidiscrete approximation, will be used later.

We will use the symbol C to denote a generic positive constant throuqhout this

m
2

work and we will define L ( 0 if m. m

31

I
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II. Parabolic Regularity

We will now fix some notation and discuss some of the properties of the paraloli-

problem defined by (1.1). We will not cite specific references for the results con-

cerning the elliptic equation theory, but most of the statements we make ma, be founr,

for instance, in [6).

We let Wk'
p - WZ'P(0) be the usual LP(MQ-based Sobolev spaces on , where

1 < p < - and Z > 0 is integral. We give them their usual norms, denoted by

We will write H for W Z,
2  

(the L2 (Q)-based analysis will play the

largest role in our work), 11-11 Z for 1'I'fZ,2 and 11'-1 for H-1 0 . We will also let

2 2 1
HI1 denote the L (M) - L (Q) operator norm. We will use the space H , which iso

the subspace of H
1 

consisting of functions that vanish (in the sense of trace) on

Q, if we are considering the Dirichlet boundary conditions. We will also need to

consider the space L ( ), whose norm will be denoted by II'*10,32 and H1 (I),

whose norm will be denoted by 11'11 1,. We let (',') and ( ,- ) denote the usual

L 2(2) and L 2(2) inner products, respectively. Finally, if X is a Banach space,

we will let C Z+([a,b],X) and C +E((a,b],X) denote the usual spaces of X-valued

functions that have a Hblder continuous X-th derivative, where Z > 0 is integral

and 0 < c < 1 and B(X) denote the usual Banach space of bounded operators on X.

2
We shall assume throughout this work that the initial data function v E L (2).

We now need some concepts that pertain to elliptic equation problems that are

associated with (1.1). We begin by defining some bilinear forms on H 1i Let

0 < t < r and set

d d

D(t) (o,.} - (aij 0 j(),Di )) + ( a 0 iDi(),i)) + (a 0-), ,))
i,j l=I i 0

d d
D*(t) (,-) E J= (a.jDj(),D I()) - (aiDi

i,j-1 i.l

d

+ ((aO D i

-4-



As usual, D(t) is associated with a weak formulation of a boundary value !,robl,.:'

for L(t). D*(t) bears a similar relation to L*(t), the formal adjoint of L(t),

defined by L*(t) - L(t) - G(t) where

d d
L(t)(-) I-- D. (a..D (')) + (a - 7 Da-i (.)

i i J ~ 0  2 iO

d d
G(t)(') i a i D ( i +

Di
a

O  
)(

' )

d
We shall assume that a0 - (a 0 - Dia i) > 0 on Q x [0,T] if we are working

i=l 

with the Dirichlet boundary conditions or that a0 > 0 on 2 × [0,T] if we ari< work-

int with the Neumann boundary conditions. Thus D(t) and D*(t) are (strongly)

H1. 1
coercive forms over H if we have the Dirichlet boundary conditions or over H if

0

we have the Neumann boundary conditions.

2
Since we wish to regard L, L* and L as unbounded operators on L (2), we

must discuss their (common) domain of definition D If the Dirichlet conditions are

2 1
under consideration, we let DL - H n H . If we are considering the Neumann problem,

d
we let D H 2 2 w = 0}. Then L, L* and L are indeed

Li~j=l iJi

closed, unbounded operators on L2 () with a common domain DL , L* is the L ()-

adjoint of L and L is selfadjoint. We will give DL  the L2- norm and, for

convenience, we will give G(t) and G*(t) 2 -G(t) the domain D
L

2We will now identify a space intermediate to L (Q) and DL that will be useful

later. Let 0 < t < T. Since L(t) is selfadjoint and positive definite, we can

use spectral theory to define L (t) on its domain D(L (t)) cL (Q) and we can give

the latter the norm L 
2

(t)()II. If q E DL , then

11lI~ ll Lg,g) = 2 (D + D*) (g, g) 11 [gl 1

where we have used to denote a norm equivalence. Thus it can be seen that

-5-



D(L(t)) is the 1I 11 1-norm closure of DL and the I"(t) ()II-norm is equivalent to
1 i

the II 1-norm. We will write HI to denote this space, which is Ii if the
0

Dirichlet boundary conditions are under consideration or Ii
I 

if the Neumann conditions

are being used and we will give it the II'111 -norm.

We let T(t) denote the solution operator for the elliptic boundary value problem

associated with L(t), for 0 < t < T. Thus T(t) is an operathr from right

Z Z+2
hand sides g c H , for any 2 > 0, to solutions in H n DL that satisfy

L(t) (T(t)g) = g. We define T*(t) and T(t) analogously and note that T*(t) is

2
indeed the L (:)-adjoint of T(t) and that T(t) is selfadjoint. (We will continue

2
to use the symbol * to denote adjoints taken with respect to the L (2

)
-inner product).

Let j > 0 and let L
(j ) 

() d L(t) denote the operator obtained by dif-

ferentiating the coefficients of L(t) with respect to time. We give this family of

operators the domain DL and we define L*
(j 

(t) anc (t) similarly. If we

regard T(t) : H 
Z  

H2+2 n DL  for some 2 _ 0, we can verify that T (1) d)T

H 0 D for sme Ldt

exists (in the operator norm) and is, in fact, T = -TL T. We can continue

differentiating and show that T (t) exists for each j > 0. Similar statements

hold for T*(t) and T(t).

We can now use the work of Sobolevskii [10] to study the solution of (1.1). The

solution u of (1.1) can be described via a family of fundamental solution

operators U(t,s) 7 B(L ( )), defined for 0 < s _ t , -. In fact, the operators U(t,s)

are strongly continuous in L
2 
(n) for 0 < s - t < aro continuously iiffrentiable

in each variable in B(L2 (2)) and have range in DL  for 0 < s < t < T and are

characterized by the following equations:

(2.1) - U(t,s) + L(t)U(t,s) = 0 and U(s,s) =I for 0 < s < t I T

The unique solution of (1.1) is given by u(t) = U(t,0)v, for 0 " t < T. We note

that U(t,;)U(',s) 
= 

U(t,s) for 0 s, < t <T and that s U(t,s) = U(t,s)L(s)

on Dr for 0 -s ' t --.

-C,-
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We can use such fundamental solution operators to describe the solution of a more

general problem than (1.1). The following equations:

(2.2)(i) w + L(t)w f(t) for 0 < t < - and w(0) = w0

where w0 r L2(2) and f EC-([0,-T],L2 (P)) are known and - > 0, have a unique

solution

(2.2) (ii) w < C([O,T],L2 ( )) C 1((o,-],L ( ))) n C((0,r],D L )

given by

t

(2.3) w(t) U(t,O)w 0 + J U(t,s)f(s)ds for 0 < t T
0

If w0  DL, then w C(10,r],D ) and if w0 = f(0) = 0, w r C I(L0,TJ,D) for

some E 1 , . Moreover, if '. > 0 and f KC ([O,], (L , then

w .- C I([0,r],L2 ()) and

12 w(t)1 C(,)t-'- Ilwoll + su i d f(s) I) for t

for some constant Co.). (We will often write w (J) i t w(t),

u 
j

t) -t) and U (t,s) = --L U(t,s) for j > 0, in the future).

We also note that other results from [10] show that if w has the continuity

properties described in (2.2)(ii) and w t + Lw = 0 for 0 < t < T where

- 1 -~2
w(0) 11I = D(1) '(0)), then w , C"([0,T],L ("I)) and (tw(t)) C ([0,T],DL ), for

some - 0. These results allow us to derive the following:

Prorosition (2.1): If w D I f , C' (10,i,L
2  

)for some > 0 and

L(0))w - f(0) H, then the solution w of (2.2) is in C I([0,r],C )  for some
0) L

Proof: Let t + Lt)v 0 for '- t I r and y(O) L(0)w 0 - f(0) H
1 

. Then if--- , > 0 sota

z w(t) - wC + ty(t) for 1) t T, there is an 2 0 so that

7I



z t + Lz = (f - Lw0 + y + (L - L)(ty)) g C 2 I2

3u*n, z(0)) r ,(O) 0 . Thus z C ()0,rj,Dl ) for some U and tX: r,.ui !

We will soon want to examine further conditions under which thu soluti-,!

is smooth at t = 0 and we will al . want to estimate the size of this sol ltIA. 1:

terms of data. We shall study another result about ,olutions of (2.2) to sarr-,',

this analysis.

1 2Proposition (2.2): If f , C ([0,T],L (!)) is such that there is a (unique) solutlur.

1 2
w E C ([0,T],L (0)) n C([,-r],DL) of (2.2) satisfying w(0) = w0 = 0, then for each,

> 0, there is a constant C = C()) > 0 so that

(2.5) 1)w(t)) < C sup ))Tf(s)II + E sup sII(Tf) (s)) for 0 < t < 7
0's<t 0<_st

(2.6) w(t)1lh1 < C sup )Tf(s)l + E sup s))Tf (s)) for 0 < t < 7
0<s<t 1 <s<t s 1

Proof: We see that Twt + w = Tf and w(0) = 0. We will analyze this equation usins

energy techniques that were used in a similar argument in [31.

We first see that if 0 < t < T, then

t t d

(2.7) tlw(t) 112 = t 11w)
2
ds + f s d 1w(s),12ds

0 0

The equation, (2.2), shows that

1 d 2 1 d 2 w
(2.8) 2 ds 11 11 < --2--)IW) + (Tw ,w ) (Tf,w )

2s -2d a s a

(Tf,w)s - ((Tf)s,w) for 0 < s < T

Thus, if we integrate (2.8), we find that

(2.9) d ds 14 
2
ds 

<  
2 vl2 + ctilTfll 2 + C 1 Tfl 2 ds + C 2 wl; as

0 ds20 0
0C_ t2 2

t sup s I1(Tf) 11+2 OS s

Since Twt + w = Tf - TGw, we see that

-8-



1T,w) + wl2 1 1 -(1) 2
(2.10) (2w w) +w,w s 2 ) w,w) + 11wfl

= (Tf,w) - (TGw,w) for 0 s < t

We now analyze the individual terms in (2.10). We have the following estimates, where

0:

(2.11) T (1) w w _ -( 1)- C1w- 112
(2.11 (L rwTw) Twl

K C(LHw,Tw) = C(Tw,w)

(2.12) -(TGw,w) < C(Tw,w) + l(TGw,Gw)

(2.13) (TGw,Gw) = -(G TGw,w) < C((TGwj l l(w;,

I I
< C(LETGwTGw) Iwl = 

C(TGw,Gw)
2 1(w)

(that is, (TGw,Gw) < CjwI
2
) and

(2.14) (ITfil = (T(L + G)TfIl < CIITfIl

Thus, returning to (2.10), we can now see that a suitable choice for 1  0

lads to the following:

2 - 2

(2.15) (Tw,w) + (Iw2 2 < C(Tw,w) + CIiTfI 2  
for 0 < s < T

s -

This implies that

t 2 '

(2.16) f (wj
2

ds < C f (lTfI2 ds

0 0

We can now obtain (2.5) from (2.7), (2.9) and (2.16).

We now turn to (2.6). We first see that if 0 < t < T, then

2 <
Ct iwl

2 
< t(Lw,w)1 -

t t t
(Lw,w)ds + f s((llww)

d s 
+ 2 f s(Ew,w )ds

0 0 0

t t
< C f (-Lw,wlds + 2 f s(Lw,w )ds

0 0

Since w + Lw = f - Gw, we see that

3

-9-.
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[IW 11

2  
(LW,w) = (Tf,L*w) (Tf ,L*w) - (Gw,w) for 0 < s < r

:hus integration gives us the following, where ci > 0:

t 2t tEww < It-lTf)) 2

sw 2ds + 2 st(Lw,w) + Ct1l
0 s0 s -

t 2 t t 22+ c f ITflI1ds + c f (Lw,w)ds + cI f s
2
fTfsl

l
Ids

0 0 0

Returning to (2.2), we find that

1 d 1lwl1
2 
+ (Lw,w) = (Tf,L*w) < CIITf]l

2 
+ 1 (Lww) for 0 < S < T

2d - 1 2

which gives us the following estimate:

ft (Ew,wlds = ( (Lw,w)ds <_ C l 11Tfllds

0 0 0

We can now obtain (2.6), which completes the proof.

We now study results that hold for the solution u of (1.1).

Proposition (2.3): We have the following for 0 < t < T and m > 0:

(m+l) (in) i-(MI (-)
(2.17) u + Lu =m- L u

9,=0 :

m [ m gl

(2.18) u 
(m
) = -T M (LT(MnZ )u(Z+l)

1=0

Proof: Since u C m+I((0,i],L ( )), we can obtain (2.18) by successive differentia-

tion of the equation Tut + u = 0. This shows that u (C m((0,TI,D L). Successive

differentiation of (1.1) then gives (2.17) and completes the proof.

Proposition (2.3) will be used extensively, in conjunction with elliptic regularity

results, to translate information about derivatives in time of u to information about

spacial norms of u. For instance, an inductive argument shows that

m

Iru(t)l 2m C / P Iu (t)ll (0 for m 0 and 0 t _

,2m+lj (l

- l4-



We now derive a series of estimates that relate norms of the solution u at one

time to norms of equal or less weight at an earlier time, giving up a constant that

contains a pole in the time increment. These estimates will prove important in later

applications.

Proposition (2.4): If 0 < Z < m and 0 < s < t < r, we have that

(2.19) (t - s) Q u (m) (t)) , (t - s) fiu~t)C2m

2(m-

Ci)
4m- C (u~ j  

(s)CC _ CC~u(s)C (m o

(M)
(2.20) (t S) u (t) (t - S) u (t) 2m

C Y lu ,s) ( S) CIut){CC
j=0 2

m+.
3 Clum)(tl Clu sl

(2.21) (t - s) (Cu -t) 1 CI1u CS)))

Proof: We will prove (2.19) and (2.20) first and it will suffice to prove these

results with m 0 and Z = 0 or 1, for just the time derivatives. If > ,

the interval [s,t) can be split into I equal pieces and the results for =

used 1 times. Equations (2.17) and (2.18) and elliptic regularity can be used to

obtain the results for the spacial derivatives. We note that we are avoiding the case

s 0, so we have sufficient smoothness.

If m > 0 and 0 ' t < T, (2.17) shows that

1 d (m) 2 (m) (m) C() CM)
2 dt u (tC I ( u ) C X Cu (C 12 (u CC

j=0

C1u m) (t 2 4 C C 11u(J) ( U 2

j=0

We can now obtain (2.19) for m 0 and = 0 by an induction argument. (Note that

1 (u(t)1 < C1u(s)C for 0 s. t i).

- I
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We also have the following for 0 < t < r:

(n+l) 2 1 - (m) (m)
Ilu (t)ll 2 + - (Lu ,u

-i u(J)1l2 u (m+l) 1 + Cfu (m) 112 + I u(m+l) 112

~ =01 4j=0

m-1
1 (m+l) 2 (in ) (in2

< lu 11 + C(u u ) + C i Ilu( 11
j=0

Thus, we can again use an inductive argument to obtain a result, in this case (2.20)

with m > 0 and X = 0.

Now set w(t) E tu ( m ) 
(t + s) where m > 1, s > 0 and 0 < t < T - s. Then

w t + Lw = -t m L(
m -

j)u(j) + u(m)
j=0 Mj

- -t Z U-J L(mj)uI]) - ml [M) L"-l-Ju 5(j) f for 0 < t < T - S
j=0 j=0 -

and w(0) = 0. Using Proposition (2.2), we see that if 0 < < - s, then

Ilw( )Il = Ou ( + s)II < C M Iu1 j ) (s)Ill + 1 sup ClIu ( + s)lt
j=0 0 <

This gives (2.19) with £ = 1 and m > 1, after a change of variables is made. We

now derive (2.20) the same way, using the II .1*I-norm results of Proposition (2.1).

To prove (2.21), we observe that (2.17) and (2.19) show that

(t - s)m
+

l 11u(m ) (t)in 2  < C(t - S)
m
+l L(t)u (m ) 

(t)ll < Cllu(s)I

and that (t - s) m 
flu(m) (t)[ < C))u(s))), for 0 < s < t < r. Thus we can use an

interpolation argument to see that

N u (m ) 
(t)ll < C(L(t)u (m ) 

(t),u (m ) 
Mt ) < C1lu (m ) 

(t)) 1 )L (t)u (t)I

< Cl1u (u) (t) 11 u (t)ll < C(t - ) - m-  1 u (s)ll2

This completes the proof.

-12-



We will now study when u is smooth at t = 0. 7he initial data v muut '.&if"

boundary compatibility conditions for this to occur. We will use certain (unhoucd

"time differentiation" operators A
(m ) 

(t), defined for m > 0 and ( < t :, to

study these conditions. These operators will satisfy the equation u
(m ) 

(t) A fi) (t~u(t)

for 0 < t < T and their form will be motivated by (2.17). Fix 0 , t , t

A(0) (t) S I on D(A(0) (t)) - L2 (2) and let

(m~l)m N (m*j (j)
A(m+l) (t) - - L~

m
j

) 
(t)A (t)

j=0

proidd ha {(j) mn
provided that (A ( 0t) are given, be defined on the domain

D(A ( m+ l ) 
(t)) - {w : w c D(A (m ) 

(t)) and A (m ) 
(t)w C D }

We note that A
(I ) 

(t) = -L(t), A
(2) 

(t) = (L
2 

- L 
( )

) (t) and that elliptic regularity

(in) 2m
shows that D(A (t)) c H for m 1 0. Moreover,

C (12) -- {f ( C 2() : supp f c 1) c D(A
(m ) 

(t)) for m > 0
c

We will now use these time derivative operators to characterize when the solution

u of (1.1) is smooth at time zero.

(in) (m) 1
Proposition (2.5): (1) If v c D(A (0)) and A (0)v c HI, for some m > 0, then

m I 2m+l
(2.22) u E Cm([0,T],H,) n C([O,T],H

and u E ini[O,T],DL ) if m > 1.
L_

(2) If v E D(A
(m + l ) 

(0)) for some m > 0 then

(2.23) u c Cm+ I([0,T],L2 ()) n C ([0,T],D L ) n C([0,T],H
2m +2

We note that this Proposition indicates when the restriction "s > 0" can be

removed in Proposition (2.4), via the taking of limits, when v satisfies the correct

compatibility conditions.

In the future, if we say that v c D(A 
(m + 

(t)) for some m > 0 and 0 < t < T,

(iCm) 1
we will mean that v c D(A (t)) and A (t)v e H,.

-.13-



Proof: Our previous discussions indicate when equations of the form (2.2) have limits

2in DL as t -~ 0; that is, when wo C D and f IC' ([0,-r],L ((W) for some C > 0.
0 L

Now we will study the 1* case. If z t D (2.20) shows that IjU(t,0)zIl C11z1 zI

for 0 <t < T. Thus, by density, IJ(t,0) : l H~ is uniformly bounded for

0 .Since U(t,Olz -~ z in il*as t - if z D ,U(tO)z z in If as

t .0if z E H. .Thus if w satisfies (2.2) where w 0-If* and f tC ([0,:],L ()

for some c > 0, w(t) - w0  in H) as t -- 0.

Equation (2.17) now suggests an induction argument which would use the above

H*and D L convergence results, which would fit with our definition of D(A (0))

and which would complete the proof. However it would be necessary tn know when the

right hand side of (2.17) is in Ct([0,,l,LO 2 for some 0, since the induction

hypothesis would only indicate that the right hand side is continuous. 'lh rceluired

result is discussed in Proposition (2. 1) , so the induction argument can be carried out.

Thus, we can prove the results on the- time derivatives of u. t>:uations (2.17)

and (2. 18) and eliliptic rc,;ularitv,. then comj, 1 eb the proof.

We now wish to identify the 1. ( ) -ad joint of U, the fundamental sol otion)

operator. This ident if i at ion will 1rove isi f I lit or inr some, boont st re;ioni ar:ome-nt s

(as in Helfrich 15)). We state it her- and o:l a p roof.

Let Lit) 1* (1 - t) define anothtr i:m ,of differettial operat-rs. We note

that these operators have all the~ t-o), t, is r, :ired of the fami l I.t) -. Thus the

equations

tJ~t,.s) 4 Ltlto)=Iand U(s,sl - I I fo r C

define a fundamentalI so) ot ion o! rat or 1 to wh i I -arabol i c regu la a t,., apl ies . We

have. the fol lowing re sulIt.

fProposition (2.'.: ) ) U( t ). I fo r 0 -- s , t

Proof: Le t I!*(,PL si t) fo r (I<!s t -T and note that , I- t Ot's)

exists in B)1 M 2 if t S. Thus i f f -. 1, 2 q D,,1 and s t, then

-14-



CU f,g) (f,60 -S,T t t 9) (6f,L*(t)g) ( LL~f,g)

the last step is valid since the previous steps showed that Of c D L. Thus,

satisfies (2.1). Moreover, if 0 < S< t <T and f and g E D I an estimate from

[11 shows that J(6(t,slf - f,g)j < CIt - sJ IlfIl 1q11. Thus U is strongly continuous
2

on D0 for 0 1s "t < T. Since lull j < ul 1 for 0 < s < t < 1, U is strongly

2
continuous on L (..) . This completes the proof.

We conclude this Section with results of a technical nature concerning the fine

structure of the A ()(t)-operators. Let 0 < t < T and K > 0. Define

L +It) - L~t) + K on D0 and let T It) c B(L 2 ()) be the associated solution

operator; that is, L+T I on L 2(2). We define L t)W and T ( )M as before,

for j > 0. Let A( It) =I and, for m > 0, define the following (inductively) on

DIA Il t)):

(2.24) A t~) - (Mt ) (m- M I +K
+ (t L + (t)A +7 (t (in) K

(m) -Kt d\ -Kt
Note that A~ dt

1
( uCt)e ult)) if m > 0 and 0 , t CTand

'~ m~ -Z l) mJ (KmR Kt -Kt ) Cm
(2.25) K-A(u (K e )(Ce u)( = A mu

if m > 0 and 0 < t < T. Letting v range over DIA ()(0)) shows that we can

take t =0 in (2.25) . Suitable translations of the origin t = 0 then show that

( ) [mfi) CmPA( t) on CA m t)), for 0<t<T
(2.26) A (M ;'Y_ + 

1
> n I m

Now let E I0 t) I, E (C t) z L It.) and, for each m > 1, define E Cml t) as

follows on D whenever each C- (j () (E j (t)ll exists in B(L 2(M)), for
L' -4

0 < j _ mn:

(2.27) E Cm+l) (t) - L mT (1T + n- 2 (1 ) m+ 1-i r T(mZ)- 
1 

V,
1 2

) .. E-(m)

+ 4( + Y=0 2E)+

We have the followingj:

-15s-



Proposition (2.7): For each m _> 1, there is a K = K(m) > 0 so that the followinj

hold for 1 < Z < m, 0 < t ' r and K > K

(2) i-r2
(2.28) E : H D-L H H exists and is bounded for i > 0

- ( Z ) 
i  

i+2
(2.29) E : H H n DnL exists and is bounded for i > 0+L

(m) (_ m (m) (1) (m)
(2.30) A + (-) E ... E+ on D(A

Proof: Let 0 < t r T, K> 0 and f r L 2(). Since L+T+f = LT+f + KT+f,

(C + K) IT+ fi) 2  
-_ (LT+f,T +f) + K[[T+flr 2  = (f,T+f) < If)) (IT+f l

Thus (C + K) (IT +fl < C))fII. Also IIT+f))2 < CILT+fl < C)ifI. Moreover,

1IL+T + f)l = 11fll and if 2 > 1,

TM 
) f i < V1IL Lj) T ( i

+ + -- ) +
i=0

so that by induction, IlL T(Z))1 < C for Z > 0. Thus

(C + K) (I T ) = (C + K) IIT+L+T if)l < ClIfl for Z > 0

We know that E is well defined, (2.28) and (2.29) are satisfied,
+

A() E() and (C + K) IIE(1)
A = + C. We will now assume, for some 1 < C rm - 1,

thtE(
I

) E 
(

)
that E .... are well defined, (2.28) and (2.29) are satisfied,

+ +

A -E(j) A (9- 1) 
for 1 < j < Z and (C + K) IIE+(J) < C for 1 < < Z.

Equation (2.27) then defines E and the inductive assumptions show that (2.28)

(Z+l)
follows for E+

Note that E(1+1) = L + +.L+T +  + R+(Z) = L+ + +) where (C + K) )R (+I)

< C and 1IL T (1 < C. Thus we can choose K > 0 so that 21B(+I)[1 < K. Then-- + + -_ + -

L2 ()1
for any g L (2), there is an unique w E H that satisfies:

(2.31) D(w,P) + K(w,) + (B+w,4s) = (g,';) for all i; H ,

-16-



1
since the form on the left hand side of (2.31) is coercive over H,. But since

1
D(w,P) = (q - Kw - B+w, P) for all P , H1, elliptic regularity implies that

w E D . Moreover,

(C + K/2) lwl 2 < D(w,w) + K(w,w) + (B+ww) = (g,w)
2+

so (C + K) 11wl < C11gl Thus E+ D L  L2(- , )  
is invertible and (C + K) lIE+

-( +1)

< C. It is now easily checked that (2.29) holds for E+

( +i)

We will now study (2.30). On D(A ), we have that

E(Z+ ) A( =) + + T+ +

+ X (-I) - T+ E+ . .. E +

j=0

-L(A M+ L- 1. T 2-)A jlj=0 jj + ++ + j-0

But since

-) i LT 'A l  = A L Ti -'' Lj- i

j= j=0 i = + +

Z-1 Z-1 {7 L T (Zj) L(ji) A(i) (j j + i)
i= j~ J1 L + 

+  
+ +

U-) (-i) (j i)
=L((L - T L+ )A+

++

i=0 = + +
i=

[ 
L(T+L+) (  i  

+ ( - ) 
A(i)

i=0

(Z+1) (9+1) (Z)
we see that A = -E A+ + +

The proof can now be completed by induction.

-17-
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Under the conditions of this last result, we see that if m > 1, the operators

A can be factored into operators that are each a bounded perturbation of L and
+

which re in fact L if we are dealing with time independent coefficients. Moreover,

if we regard A as an operator from D(A ) (to which we give the 11-i -norm)+ 2m

to L 2) if m > 0, it has a bounded inverse which we will denote by A- (W
-- +

-18-



III. The Semidiscrete Approximation

In the last Section, we discussed some properties of the parabolic equation we

intend to study. Now we are going to examine a method of constructing an approxima-

tion to its solution, given a method of approximating solutions of the associated

elliptic problem. We begin by stating the kind of properties we expect such elliptic

approximation methods to have, although we defer verification of these properties

for several standard methods to a later Section. We then define the semidiscrete

approximation to the solution of the parabolic problem and begin our study of it.

We assume that we are given a finite dimensional subspace S. C L (M) (that

depends on a small parameter 0 < h < 1) and a family of approximate elliptic dif-

ferential equation solvers 'T h(t)} that are (at least) bounded operators on

h2L (.). We will give Sh the L 2-inner product. We will further require that the

following hold for 0 < t < T

(3.1)(i) T (t) , Th(t) : L2 () Sh
h hh

(3.1)(ii) (T hf,f) >_ 0 for f t L2 (Q) with strict inequality if 0 f S h

Since L h (Thi, h Sh - Sh  exists, we can ask that'S i c h ' h h h

(3.1)(iii) L (t) d (-) L (t) : S Sh  exists for 9 > 0
h dt h h h

Finally, setting Gh(t) (L (t) - L*(t)) we will require that
h 2 h h

2 2
(3.1) (iv) 11G (t),0I , [II 

2  
< C+(Lh(t), ), for all 0 < t < T and Shh

where C+ is some (strictly) positive constant.

Given f . L2 ('), we will regard T hf as a function in Sh  that approximates

the solution Tf of an elliptic differential equation problem.

We now make some observations concerning the T h(t)} and iL ht)) operators.

Let P L2(C) 2G Sh  denote the orthogonal L2 (()-projection onto Sh  and let

-19-



II

P I - P. Then T PT P, T- = PT P and (3.1) (iii) implies that the. operato<r
h h h

T h  (t) Pt h (t) L2 Q) Sh exists for any Z 0. We let L (t)

I (L(t) + L*(t)) and T (t) -(L(t)-P, for 0 < t < T and note that the;':
2 1h Lh -t-

selfadjoint operators are smooth in time and satisfy analogues of (3.1). -inc,-

(L h ,,) = (L hP,,;) for P , Sh' we also see that

h2

II0 2 
< C( L,e) < Cl L h 11 114 for all S h

Thus, IT h(t)ll < C and lITh(t)II < C for 0 < t < T.

We now use the family {Th(t)} to define an approximation to the solution u

of (1.1). Choose a vh E Sh  (which should be thought of as an approximation to the

initial data function v e L2 (1)) and let uh E C ([OT],Sh) be the solution of

(3.2) Uh, t + LhUh = 0 for 0 < t < T and Uh(O) = Vh

or equivalently,

(3.3) T=huh + Uh 0 for 0 < t < T and uh(O) vh

The function uh(t) is our semidiscrete approximation for u(t). A possible choice

for vh might be Pv. We will discuss other possibilities in a later Section.

We now study some properties of the solutions to equations like (3.2). We will

include estimates of the time derivatives of such solutions that are independent of

the dimension of S To enable us to obtain these estimates, we will assume,

throughout this Section, that the following hold for 0 < s,t < T

if L M (t) T (s)ll, spl < C(t)) for , > 0
h h  ,

Mh (t)9 2 
(L (t)CM) for t > 0 and € c S
h hBh

(Z) rdwhere G -h Gh . Straightforward calculations show that Condition B, then

holds for the (Lh (t) family with, perhaps, new constants.

We note that (3.1) and Condition B. imply that we can use the work of
nfSobolevskii (101 to study a fundamental solution operator for (3.2) and Le assured of

-20-



dimension independent estimates. Thus, there is a family of operators U (t,s) "n

sh , defined for 0 < s < t < T, that is smooth in s and t for all 0-

and that satisfies the following for 0 < s < t < t < T:

Uh, t + Lh(t)Uh = 0 , Uh, s - Uh L h(S) = 0

(3.4)
Uh(SS) I I Uh(tE)Uh( ,s) = Uh(t's )

We will write U(m) (ts) D Uh(ts) for 0 < S < t T and m > 0. If

Wh E Sh and fh 7 C([O.T]'Sh), then the following generalization of (3.2):

(3.5) wh,t + L hwh = fh for 0 < t < T and w h(0) = Wh

has an unique solution wh C C ([o,T,S h ) given by

t
(3.6) w (t) = U (tO) h + f Uh(ts)f,)d s0 h h

If m > 0 and 0 < s < t < T, we also have that

(3.7)(m) (t.s)P < C(t - s) - m

h _

Versions of (2.17) and (2.18) hold for U and lead to certain estimates. For
h

instance, if 0 < t < T, m > 0 and P E S., we have that

UCm+l) (in nirn (in-i) (Q.)

(3.8)(i) Uh (t,O) + L (t)U m) (t,O) L bLh  (t)Uh (t,O) on S
bm) b m+l

(3.8) (ii) "L h ( t ) Uh ~m  
(t,0)sP.. < C Y 11U h (t, ),

1=0

We now define operators N(m) (t) on Sh, for each 0 < t < T and m > 0,

(m) (m)()
that satisfy Uh  . Let A

0  
I and, for i > 0, let

A(m+l) ) L (t) M)(t)

(3.9)

( m) (nN (t)Th Ct) + (A h (t))

-21-



(where the alternate characterization follows from tihe observation that U (m+l)

h

(U )t  and a soon to be noted proof of the invertibility of U h). We also have

that

(n() m + (i)

where Rh (t) is a linear combination of operators that are at most an (m - 1)-fold

product of Lh  -ouerators, includino at least one time differentiated operator.
h

If we let L (t) - l,*(T - t) for 0 < t_ , we see that these operators
h 1)-

satisfy all the assumptions we made on the family L h(t)}, with the same constants.

We can thus define an associated fundamental solution operator Oh  and time differen-

tiation operators , .. We also have that

(3.10) U (t,s) (7 - s, r - t) for 0 < s < t < "
n h -h

We can also use the energy techniiues of Section II to derive estimates. Let

wh(t) - Uh(t,S)Wh(s) for s I t - where s < T is fixed and Wh(S) c Sh  and

let Kh = sup 1(()II. Then since

d -t 2 + 1 - 20 = (t)II + (LhWhW) (t - - - + w (t) for s < t <
2 dt h h h - h 2i h h

we can conclude that U (ts) : S S exists for 0 s t < T. We can also
h h h- -

provide an Sh-analogue of Proposition (2.2). In fact, if wh  C U 0,j) solves

(3.5) where w h(0) = wh = 0 and fh c([(fo''Sh ), we have the following for c > 0

(3.11) 11Wh(t) 11< C sup II (T fh ) (s)1 + t sup 1i (Th f h ) s (s)II for 0 < t < T
0s~ t Os<t

To prove this result, we first note that S h-analogues of (2.7) through (2.10) hold

and that, because of Condition Bh ' the following holds for every C1 > 0

(3.12) (T h ) hwh l 'lh Thwh 1',hwh

- - M1- -M1--c I (r hh hWh' w 1 T hwh C(T Wh )w

2-
- CI 11W h( + C(T hwhw h

-22-
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rhen since analogues of (2.12) throuqh (2.16) hold, we can prove (3.11). The proof of

Proposition (2.4) and the invertibility of the Uh operator than shows that if m 0,

(3.13) (t - s) iu(M) h ts) --
j=O

for 0 S < t < T, 0 < < m and S

Thus we have (dimension independent) estimates for the solution of (3.2)

(and (3.5)).
-1

how let K > 0 and set 1 h,+(t) - Lh(t) + K on Sh  and T ,+(t) - (1 ,+(t)) P

on L ( , for 0 < t < T. If we define operators A )(t) for m > 0 and

0 t T using the Sh-analogue of (2.24), we see that an analogue of (2.25) holds

in h. Also, the invertibility of Uh  shows that an analogue of (2.26) holds in

" Finally, we can use the techniques introduced in the proof of Proposition (2.7)

to show that an analogue of Proposition (2.7) is valid in Sh" If m > 0 andh- :

( ') m
) is sufficientl;" large, there are invertible operators [E h,"*(t)}

) m 
=0 on Sh

for J t IT, given by an appropriate modification of (2.27), that satisfy

A(in) .m (in) (1) fr 0 t T
(3.14) A h (t) (-I) () (t) ... Eh , (t) for 0 < t T

h+h+h,+-

-(in) A(ml -1 -(n

We let A- (t) (A ((t)) and note that HE- (tm)h P C for 0< t T.
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IV. Error Estimates

We will now study how well the semidiscrete api roxiMatii, u. (I "X

the solution u(t) of (1.1), given various conditions. E,- will ',ntj:lu ') ,-::'" .

that the family {I (t) satisfies (3.1) but we will n,, lonrct asrm 1. ,
h

B necessarily holds. We recall that the semidiscret ( approximat ion 1,
h

defined in (3.2) (or (3.3)), where v = uh (0) 1 Sh  is thouicEt of as a. a;.r:,: -

tion for v. We now let e(t) 1 ht) - u(t) and , (t) ( (T - Th) t) fo

0 < t < T. Note that

(4.1) The t + e= for 0 < t< T

We will analyze this error equation in a manner suggested by work in [3].

Our main estimate is given by the following:

Proposition (4.1): Suppose that e and - E C1 (o,T],L2 ()) satisfy (4.1) and

that for any 0 < 6 1 1, there is a C = C(6) > 0 so that

(4.2) 2T It 2 (6
S (t)g,g) 11g + C) T h(t)g,g) for g t L2('.) and C , t

Choose p = 0 or 1 and if p = 1, suppose that Condition B, holds. Then for

any - > 0 and 0 ' t < T, we have that

(4.3) tP11)e(t)1 < CII (TpPe) '0)11 + C(p sup ))o(s)( -+ sup s
1
(1( (s)) 11 + s ,- hs

O<s'ct <Set

t
where ,i(t) J (s)ds for 0 < t < T.

0

We note that (3.12) shows that Condition B actually imnlies (4.2).
h

Proof: Let w(s) = sm/2 e(s) where m = 0 if p = 0 or m = 3 if , = I. P!c:,

(4.4) T w + w = m + m s T e for 0 < s
m /  

T
h s  s 2 h

where wIG) is e(O) if m = 0 or 0 if m 3. Let a(t) C I([0,I],. be

defined by

(4.5) T a m (m-2)/2T a(O) = Pe(O) if m = 0
I (.5 T a -= s he ;aO

2 h if m 3
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Thus if w E a + b, then

(4.6) T bs + b = s/
2  ; b(0) Qe(0) if m =

Note that sm/2p - b c Sh and that

zni/2 - m12 m/2
(4.7) Pbs 

= 
L (s p - b) L (s /p - b) + Gh(s/p - b)

a h h h

2
Thus, if we extend G to an operator on L ( z) by the formula G G, F, we

h h n

that
(48)Thb + b 

m 2 P 
+ sm/2- Th0 - T hb , for 0 < s < T

Let 0 < t < T and c, > 0. We can use (4.2), (4.6) and (4.8) and the fact

that (T hb,b) (0) = 0 to show, as we did in the proof of Proposition (2.2), that

2 2 m+2 2
(4.9) Ilb(t)I < C( sup sDlP(s)) 

2 
+ sup s +11P (S))

O<s<t O<s<t

Thus if p = 0 (so m 0), th fact that lla(t)ll ' (lPe(O)l allows us to complete

the proof.

If p = 1 (so m = 3), we use (4.5) to see that

1 d 2 m (m-2)/2(The,as ) for 0 < S < T(4.10) (Thas'as) + - (s al = a :

ha a 2 ds 2 (hea fos Ca'

We now use .- usual techniques to show that if c 2 > 0, then

m-2 m-2

s (The,a) =s (LhTheThas)

m-2 m-2
2 2

a S (Ls (G T he,T has )

< , 2 (1,h Thas'Thas) 
+ 
csm-(Ih 

T he ' T h e)

< C2 (T a a) + Csm-
2
(The,e) for 0 < s<

-2 h ha ha h h

-25-
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since I;Th S1 2 < C( Th',Th ) =C(Thp,,) for O c Sh  and

2
1G T h l < C(L T h,T ) C(Th , ) for P S
h h h hh h h' h

Thus, we can show the following:

t2
(4.11) la(t)I 2 C I s(eThe)ds

0 h

Since the error equation implies that

1id 2 (he1)

(T e ,T e) + (e'T e) 1 dsT + (eT e) - (T~l)e'rhe)
h s h 'h 2 ds he h h ehe

T(The) for 0 < S < T

and since (using Condition Bh) we have that (T(1)e,The) < ClIThell we have the

following:

t t 2 t [

(4.12) f s(e,The)ds < C f llThell 2ds + C f s
2l11ll

2
ds

0 0 0

We now note that T es + e = (The) s + e - T = p for 0 < s < T, which

implies that

t t () s+(h)0

(4.13) The + f e ds = a + f Th l)e ds 4 (Te)(0)
0 0

Thus it follows that

t t t t t
2 d 12 =11he + d (f 

e ' h e) + 1 el = (0 + Th)e + (The) (0), The + f e)
0 0 0 0 0

t trt

+ 2(f e,(Th - Th)e) + (
f  

e'Th-(i) f e)
0 0 0

If 3 > 0, we can use Condition Bh  to see that

+ () + (T e)(0),T e + f e) : 3 11The] 2 3tc! ell
2ho T e ( h T h  3 + ' 3 1-

0 0 0

+ C1I1 2 + Ci (The) (0)112 + C f 2Thell2ds
0
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and we can (again) use an estimate suggested by (2.13) to see that

t t
(f e, (Th - T h)e) (f e,ThGhThe)

0 0

t t
" C(f e,Th(t) f e) + ,3(ThGhThe,Gh T he)

0 0

t t

" c(f e Th f e) + C 3IT helI 2

0 0

Thus, if E3 is sufficiently small, we find that

t t

(4.14) f 11Thell
2 ds < C f 1loll

2
ds + CtIlT (O)e(0)I 2

0 h0h

We now use (4.9) through (4.14) to complete the proof.

Thus we see that if we want to estimate flu - uhl under various assumptions on

V, it suffices to estimate quantities involving p = (T - T )ut  and its derivatives.
ht

We will assume that the following estimates hold throughout the remainder of

this Section:

There is an r > 2 so that if g ( H for some

Ah 0 < Z < r- 2 and p> 0, then

(p) Z+2

(T(P)(t) - T (t))gl < C (p) h 11gll for 0 < t < T
h _A 9

If we set p = 0 in the above inequality, then we are stating the usual kind

of approximation assumption for Galerkin-type methods. We will show in a later

Section that the inequalities are also reasonable for such methods if p > 0.

Our first application of Proposition (4.1) will be a preliminary result for

smooth and compatible data v. We will need Condition Bh' described in Section III,

if we wish to analyze the convergence of time derivatives.

Proposition (4.2): Let m > 0 and suppose that we have one of the following if m = 0:

(i) Condition Ah  holds for the T hI and {T} families and h > 0 is

sufficiently small,

-27-
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(ii) The following estimate holds for some

(4.15) (Lh (t);,;) _ C' I (Lh (t) for all 0 t • and

or (iii) Condition Bh holds.

If m > 0, assume that Condition Bh  holds. Fix 0 < r - 2 and ;u,, t:.it

(a) 9'+2V D(A (0)) where 'A = m + -. Then
2

(in)

(m) (t) - (m) (t) < Ch iv1
uh  _ 

1
+2+2m

(4.16)
m

m (j) (j)+ C 11 A (y )v- PA (0)lA1
j=0

Proof: We will use Proposition (4.1) to obtain this result. We first not, that if

we have Condition Ah  for the barred families, then

h(Tb(1) Ch21(gl + IT(1g,g) __Ch2lgl2 + C(Tg,g)

< Ch i2g,12 + C(T hg,g) for g (2) and 0 < t < T

Thus (4.2) would hold if h was small. If (4.15) holds, then

Ii h g~ l < i 
< 

(LhT g,Thg) = g,g)IT for g c L
2  

and 0 < t -s

h h h-

Finally, if Condition Bh  holds, (3.12) implies (4.2). Thus the hypotheses of this
bh

Proposition imply (4.2).

We now observe that if 0 < t < T, then

1i (t)ll < Ch Z+211u (1)  (tll < Ch +211u(t)i + < Ch Z I+vi 2  1

(1 (1 +2 2dipt(t)1 < tJJ (T (
I(

)
- T (1 ) )utl + tJl (T - T lu < Ch )+2 11".11i2

ti t h h tt -

Thus Proposition (4.1) implies that Ile (t)) < Ch ;,+2 v + -"Pe(s)I for an.--- 1+2

0 < s < t < T. We can now let s -- 0 to obtain our result for r = D. Since

v , DL we also find that

) ThetIl < Ch'+2iv!vi+2 + dIv - Pv1i for 0 < t < i
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We now proceed by induction. We assume that m > 1, that v D(A ())

£+2 pp
where a = m+ L-- and that

2

(4.17) iThe (P+I) 1_ Ch Z+2l 2+2 + C p IIAh(]) (O)vh - PA (O)vii
j=0

for 0 < p < m - 1 and 0 < t < T. Since v 6 D(A (m+l) (0)), we can differentiate

the error equation and show for 0 < t < T, that

T e m) m) M) MT( 1 ) e (m ) - m-2 T(m-j)e(j+l)
ht h I(j hj=O hm

We now apply Proposition (4.1) in the manner described before and show that the

following holds, for t > 0 :

(4.19) ie (m)(t)ll < Ch Z+211V+II 2 + Cc sup ITo (m+l) (s)II
Z+2+2m Oft he0<s<t

+ IlA(J) (0)vh - PA
(j) ()Ii

=0 h

ChZ+2 Z+2+2m + - sup li e (s)ll
2 0<s<t

+ C ilA( j ) 
(0)v h - PA 

( j ) (0hvi
=0 h

The estimate given by (4.19) implies (4.16) and we can return to (4.18) to

complete the induction step. This completes the proof.

We will now describe choices for vh that will obtain O(h 
r
) convergence for

the error and some of its derivatives if v is sufficiently smooth and compatible.

The description will be easiest if we only wish to describe the error and one time

derivative.

Befoi, we give this first result, we make an observation concerning the map

PI(t) - Th(t)L(t) : D L - Sh  defined for 0 < t < T, often known as the "elliptic

projection." By our approximation assumption A., we know that
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Z1+2

if w H D for some 0 < Z. < r -2 and hence that

1Iiw -Pw~il11w - P ,Il<Ch R( 1w11t+ for 0 <t <

Z+22

Corollary (4.3): (11 Suppose that v e: D(A (,;)(0))(c H f+ n D) for some

0 < Z < r - 2 and either (i), (ii) or (iii) of Proposition (4.2) holds. Then if

V h = Pv or v h = P (0)v or v. S his chosen so that liv h-,41i<Ch Lv'+2iiA Z2

we have that

(4.20) 11lu(t) - uh (t)i < Ch Zl 1VIIZ2 for 0 < t <

1+2+4

(2) Suppose that Condition B hholds and v E D(A (0)) for some

2 2
0 < Z < r - 2. Then if v h =P 1 0)v or vh =Th(OiL (0)v or v hc S his chosen

so that 11iLh(0) vh - LiOivil < Ch i2 1VII Z4 we have that

1+4X'

Proof: Part (1) follows easily from Proposition (4.2). As for Part (2), we see

that

v h- IV11< d Lh 0)v - lvII< OILh(0)vh - L (0)v + (IP - I) L(0)v11)

The result now easily follows from Proposition (4.2).

We now wish to study approximation results for higher time derivatives. To

describe and prove such results, we first need to study some properties of the

'A+ (Oi L and ',A h, (oi)l - operators. We have the following analogues of

Condition A h.

Proposition (4.4) : Let K > 0 and suppose that Condition B holds. Then, if

g< E for some 0 < Z < r-2, we have that



(4. 22) (i) h() - (t ZCp +
2  

fr 0 t ad p
Th,+t) T+ ())gI<Cph lgl o <Tadp>0

that is, we have Condition A h for the {T +(t)) and {T (t)) families. More-

over, if K is sufficiently large, we also have that

(4.22) (ii) (E (p) (t)P - E_(p (t)gl4 'Ch 2
1

1
2

gl for 0'< t< T and p>l1
h,+9+ z

Proof: If K > 0, 0< t < T and g c H for some 0 < Z< r -2, then

g =L+T +g =LTg+ KTg. Thus, Tq= Tq- KT Tg and similarly,

(p) (p)T h+g =T hg -KT hT h+g. Let p > 0, set E - (T+ - Th,)g and suppose we know

that If(T~ (j T())f <Ch Z+2 11fl if 0 < j < p- 1 and f E H Z. hn ic
+ h,+ - _

(T ) (p) K ) p T Z(T(Z - T(Z)qE-( T h )g + K izj h h,+ +

h p) T(P-9) (p-Z) T(")-KT E +-K h T~ - T f

taking the L 2(Q)-inner product of the above with E shows that

2 k+2 Z4-2
11Ell < C(K)h 11gh9 11Ell - K(T E, E) < C (K) h 11gh9 11Ell

h _h

We can now prove (4.22) (i) by inducc-ion.

We will also prove (4.22) (ii) by induction. We know that (4.22) (ii) holds

with p = 1. We now suppose we have (4.22) (ii) for some p > 1 and all the

intermediate cases. Let 0 < t < T and g ,H for some 0 <9Z. r - 2. If

-(p+l) -(p4-l)
K > 0 is sufficiently large, we can set w E g, wh E_ Pg and

+ h +

p-2 P-j+1 p ( ) (j2 p
R9 -_ (-I)P {L T E ... +

j=0[)

and let Rh be R's counterpart on S . Note that

w= Tg- pT Mw- TR w and w =T g-p T w T R
+ + +4+ h h,+ h,+wh h,+hhi

Thus if K is sufficiently large, we have that
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11w w 11< C[II (T+ h,+ g + - T1)Wh

S h,+h +

+II1(TR-T R P)W1II+IIT (w-w 11+ IIT P[,(W-W )!]
h, h+ h h,+ h h

K)h+2- I2< C(~ 1gl + -i11w - Whll + 11 (T+R T Th , 4RhP) Wll

II (T+R - Th+ RhP) W1 < C p [Ii + h,+ )E+
(j+2 )  

(. WIl
j=o

+ , h,+ h,+ -+ + +
i=j+2

< C(K)h +211W1 Z < C(K) h +211gl R

This gives (4.22)(ii) for p + 1, which gives the induction step.

We can now complete our estimates for higher derivatives of the error when v

is a sufficiently smooth and compatible function.
(L)

Theorem (4.5): Suppose that m > 2, Condition B holds and v E D(A (0)) where
h

2.+2
a m + 2 and 0 < Z < r -2. Let K > 0 be sufficiently large and choose

wh Sh  so that

11w (m) (0)vIl - Ch Z+2r 1vIi
(4.23) h +2+2m

(in (in A-(in)

for instance, let wh PA (0)v or P ())A (0)v. Then if v - h ) 0)w
h + 1 + h h,+ h

we have that

! m

m () (j) Z2.2
(4.24) X lu (t) - uh (t)Ill < Ch 11vii Z+2+2m for 0 < t < T

j=0
Proof: Proposition (4.2) and (2.26) and its S h-analogue show that it suffices to

know that

M PA(m) (in-() A(m) h
2.
4
2
li

1 h,+h,+ Wh - PA(A-+ A+ -
< 
Ch+211 vII+2+2m

for each 0 < j < m - 1. But (4.22) shows that the following holds for 0 < j < m - 1
2.

and g H
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1A(j) A-(m) - A(j) A-(mi)gl1 Ch2+211gq1

h,+ h,+ + + C

Since iih,+A h,+Pil <C for 0 < j im - 1 and

II (P - I)A ()vi < Ch +211vll for 0 < j < m - 1+ -- +2+2j

we have our result.

We now will discuss convergence results for the error and its derivatives wh-,T

2v is no more than a function in L ( ). We will limit our choice of initial data

for the semidiscrete approximation to vh = Pv for these nonsmooth data results.

Theorem (4.5).: Suppose that Condition B holds. Then if vh = Pv and m > 0, wu

have that
m (j (j) r -/ -,.

(4.25) Y ilu ( (t) - u < Chr -r/2- for 0 < t _
j=0

Proof: We begin by noting that the estimates of Sections II and III and density

arguments allow us to assume that v E C (2). These estimates also show that we can
c

assume that h
2 < t.

We now use Proposition (4.1) with p = 1. Since

t
li (t)ll if (Th - T)(S)u (s)dsH

0

t

<1 (T - T)u(t)1 + 1i (T - T)u(0)) + f IT I 
- T ( ullds

- h h f h0

2
< Ch211v i for 0 < t <

and similarly, tolo t)l + t 2lPt (t)1 < Ch 211vil for 0 < t < T, we see we have shown

that

(4.26) 1lu(t) - uh (t)ll = hl(U t,0) - Uh (t,)P)vil < Ch 2 
t-lIv11

for 0 - t < T. Thus we have shown (4.25) for m=0 and r=2. To obtain (4.25) with

m 1 1, we will need to use this result and our previous smooth data results in a

bootstrapping argument. We will also use a special representation for smooth and
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compatible functions. (This representation was used in a slightly different context

in [l)). Suppose that p > 1 and w D(A (P) (t)) for some 0 <t , i. Then, if

K >' 0 is sufficiently large,

I+ + + h,+ +-

-(j-1) -(j) - PA(j) (j),Z Ah' P(E+ h, +)

j=2h,

Let 0 <(p < m, 0 < h 2< t < T, t - t/3, t -2t/3 and v E C (Q). Then
-1 2 c

Ilu (P t) - uh(P (t)I11 = 11 U () Et, 0) - U P Et ,0)P)vII
h h

2 h '2 2

+I (P) (t t ) ptt (U (t , t )-U (t 't )P)U~t ,0)vA
h '2 2 1 h 2 1 1

+ 11 U (t 2 t 1 WUt , 0) - U h(t 1,0)P) VII

+1U(t2 t1 1 t2' h P1 1U( )-Uh(tI10 H1 i

< term I +Ct p(term 2 +term 3+ term 4)

By our smooth data results applied with a suitable translation of time zero,

we find that if K is large, then

term, < HU ()u(t U(P - (PPA Pu (t )II
1-2 hn,+ + 2

p (P) -(j-1) -(j) -Mj (J)+ 1 11U A- PIE - E P)A u(t~

j=l h h,+ + h,+ + 2

<Ch Iu(t 2I -p--.- r+2p + C I t- h Ilu(t 2Ill +2

<~~ ~ ~ Ch-r/2-jvI

We observed in (4.20) that term 2< Ch rt-/ vII . Also,



I I,

term < IIU (U - U P)II Ilvii 11 (U* - U*P)U*ii 1lvil

3 h h

= II (0 - 0h P)1Oi lv < Chrt-r/2l vi

where we have used our adjoint identifications and smooth data results applied to

the tlme-reversed operators. Finally, term4 < C(h2 t -1) lv by (4.26).

By iteratinq the above argument w times with p 0 we find that

2 -1 r/2 2 -l1]iU(t,0) - U h(t,O)P11I C((h t ) + (h t

for any 0 t <_T. We now choose i > I so that 2
y + I > r. The proof is then eas11v

completed by red, nq the argument once for each 1 < p < m.

We conclude this Section by noting the following result on forcing terms. If

we assume we are given a suitably smooth function u(x,t) on 2 x [1,] that satisf1s

u t + L(t)u = f(t) on ' ×[0,T] and u(O) = v on Q

where f is suitably smooth on Ql×[0,T], we can define a semidiscrete approximation

by the following:

uh, t + Lhu h = Pf for 0 < t < T and u h(0) = vh

where vh is chosen from Sh. (We note that uh(t) always exists). If we set

e - -u we find that

T e t + e 
= 

(T - Th ) (u - f) = -(T - T )Lu for 0 < t < T

ht h t h
This equation can be easily analyzed by Proposition (4.1). For instance, if we set

vh = Pv and assume Condition Bh , then

iiu(t) - u h(t)i < C(u)h
r

for some constant C(u) depending on the solution.
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V. Examles

We will summarize here some well known results :'o,c.,i il ,4' V .

projection methods and we will give the additional rcqulrei .T ' "

methods that will allow us to apply the theory of the irceudino tl,.

by sketc.ing some of the common features of the methods.

Each method will use a finite dimensional subspace S, of fienctiors in 

will be associated with parameters 0 < h < 1 and an r > 2 in t'.( fli'i:.

(5.1) mi . w - + hlIw - <I e ChZ+2VII!,-Sh -, 2

' +2 i
for all w c if H, where 0 < Z < r - 2 and where 11.1) is a (perhai.s

dependent) seminorm that will be related to the 11'11 norm but which may c:ontain1

other terms dealing with boundary condition considerations.

For each of our coercive differential operators L(t), there will be an

associated positive form D h(t) (.,.) that is related to the Dirichlet form of the

operator and which will be used to define the associated T h(t) operator. Given

f 1. 2(--), the function wh = T h(t)f Sh  will be defined by the following

,iuat ions:

).2) Dh (t) (W ,) = (f,) for ; E S h

TP, for D, (t) will be symmetric positive definite if L L*= .

The following relations will hold, with certain constants:

(5.3 C 1 2II 2 IP2 < C2Dh(t)(,,t) for all c S
1 1- 1 2 h h

(5•4) 'L~h' (1) (t)( (,g2) s_
<

C(l gliog2II for I > 0,

(()

where g. and g2  Sh 
+ D and Dh  (t)(,) denotes the form obtained by

taking successive time derivatives of the Dh-form. We will also have the

following for j >0:
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(L (J)w q) D ( 
w:

)
- DJ ) (w,,)* ']- i

(5.5) 1 w] L l , . !I g zi1

*(j) 5Ij(g,L*(Jw) - D 
j  

:^

+2
where w H n D L  for some _ r-~, .5 * and z D is

LL L

arbitrary. (Thus we will "almost" , ail, to irt,oJrate by parts). Finally, .c .ill

have that

d d1
(5.6) Gh(t) = P( a oi(t)Di - ( 1  Dar) ,(t for Shi' Oil - -i ns h

where P : L
2 

(.) Sh  is the usual L
2 
(1 )-orthogonal projection.

we will now list what the 1 .11 I-seminorm and the D h-form is for each mothod.

W b will then go on to prove the necessary stability and accuracy results. (Therc

are references given in [2] and [3) for the various methods. We will not re-ea,

them here).

(R) Salerkin's Method for the Neumann Problem:

In th is case Dh (t = Dft), fl. = 1j.*1 and C. can be taken to

be (i.

(2) Galerkin's Method for the Dirichlet Problem:

Now we must restrict S to be in Hl. Thus boundary conditions
h o

are required of functions in Sh. Again Dh (t) = D(t), 1. I  liai and

C. = 0.

(3) A Method of Nitsche:

This is a technique for the Dirichlet problem that does not require

that Sh lie in H
I
. The norm and forms for the method are as follows:

Dh(t) -, ) - D(t) (- ,.-) - ( -,-L (' ) - ( - (')1'") +  
2h-l' '"

211 2 + C h 1 2 - 2 I (1 + 1.112

where - denotes the conormal derivative associated with L(t), ()( n n
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denotes the normal derivative, C, and CII are certain constants and

3 > 0 is sufficiently large. The following inverse assumption is required

on Sh as well: t.
II ()I0, + Ii€Ii, <C 1 1h-iII 1+ h 1 141 ) for all S

le note that we can take C. = 0.

(4) Another Method of Nitsche:

This is another method that handles the Dirichlet problem without

1
requiring that Sh  lie in Ho . The method is the same as the previous

one but 3 may be taken to be zero. However the following "almost zero

boundary conditions" restriction must be put on Sh

[II0,. Q < CIV hIIII for all P E Sh

where CIV is sufficiently small.

(5) A Lagrange Multiplier Method of Babu~ka:

This is yet another approach for approximating the solution of the

Dirichlet problem without imposing boundary conditions on functions in

Sh . The space Sh is constructed in a special way so as to agree with a

Lagrange Multiplier formulation that would be used in practice. We will

not detail this construction here, but note that the key to the boundary

conditions is given by the following estimates. If w c H Z
+2 

n H
1 

where
0

- r - 2, g g S + D and z E D is arbitrary, then

h L L

d d
L a. .n..w,q>> a .. ,.Dw,g -

j=l 3 i j=1 1J 1 J
(5.7)

Ch ,+1 w11 +2 1g - zi 1  for I < i < d
- +2 1- -

due to certain boundary approximation properties. We use Dh(t) = D(t)

and il-lI = 1I' for this method and (5.5) follows from (5.7).

--- .. .. ... : - , . _ .. . ..... ....... .
- -
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ia will now prove estimates that will hold for any approximation method that is

defined by (5.2) where (5.1) and (5.3) through (5.6) hold. W first see that

iJ D i i t) T(i) (i) <v CCII1, - I h 1 i
(5 .8 ) i hh22

(5.9) h (t)l, 2 ) = Mh (t)( 1 ,4 2 ) = ( j )

for j > 0, 0 < t < T, i, 2 E Sh, z E DL  and f E , for some 0 < < r 2.

The following is our main approximation result.

Theorem (5.1): For m > 0, 0 < Z < r - 2 and 0 < t < T, we have that

(5.10) II (TM) (t) - T(M) (t))fII 
< 

Ch +lI1 fIl 2  for f E H

(5.1) 'W (is) 1+2 2

(Th (t) - T (t))fII < Ch If2 f for f E H

Proof: Wea will first prove (5.10) and then we will use a duality argument to prove

(5.11). Say 0 < < r -2 and f(H Set w ( - f and w M f- - an f'±HSt h" h

for 0< j Lm. Let 
2 (j) ES be the function that attains the minimum in (5.1)

h h

(j
when ue replace w by w , for each 0 < j < m. Then

D() () 2 () (), h() 'M)
< - I h wh - wh h h

i() (in) _(m) (i) w (M) - ( ) ( +1
h h wh  - h h - Wh I

m-1+__C h D - m li (Ch£llfl +w ( w( j ) , _ w( ) M)

j=0 [=]

<c,1 M - w (M) 11 (Ch2 1 Ifl 0 + M- 1 - w M~i

This can be used to show (5.10) for all m > 0.

Now we use a duality argument. Let z E D satisfy L*z = w
(M ) 

- w
M ) 

and
L h

let Eh Sh be the function that attains the minimum in (5.1) when we replace w

by z. Then
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(m) (m) 2 (m) (m)
I1w wh = (w - wh ,L*z)

r fin (j) w(j), Cm-j) i m Ci () W(jI *Cr-j(j (w hw ,L z- (w

mmrn-i

j =0 I j) h

--j= + C Dhiw h  ) ,z CiLI)~ m m1
Sh 

)  
+lw- h;z

j=0 3=
L 3 wh  + - w

(C-C ) (() CC ), h) fo h L ( wh allz2

Z h - 1 - CLt _~

Caswa also done ine follwing

Proposition (5.2): Suppose0ta <

m-l

(Z) 2Z

(5.12) (C (t)Th11 C (L T Cth CPrww (mC llCS

h h_

h1- wI - wh

This will now u s ud y cm te remier rof.Cniin " sn ivrepoete

(sws also done the [o7lwing

Proposition (5.): If £ S and ta 0 , t hen

hh

-(2"g) I2 _< Ch t) ,)=C(h t) ,) ora l 4 h
Proof: If ge tha if S and Zh >,, te

C(L (t) __ 9. (t)CT Cs) - Ts))g,) Dh (t) (Ts) g,,
h h h h h

<chCT )- Ts))g l + CL C9)
< C 1 (Th(s )  I I (t)T(s)g,,) + C,,h[IT(s)g1 2 11'i 1

< CIH gl II11
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This suffices to prove the first part of (5.14) and the rest of the proof follows

by considering the adjoint problem.

kb note that if we have (5.13), i(Ln(t)P1I < Ch
-2 

for 0 < t < T.

Thus we can now apply the analysis of Sections II through IV to many Galerkin-

type projection methods.
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VI. Maximum Norm Estimates

We will now examine how we can use our L 2('.2)-based estimates in conjunction

with maximum norm estimates for the associated elliptic problem to prove similar

maximum norm estimates for the parabolic problem. We will use techniques similar to

those iftroduc:ed in [3).

We first stud%, qlbal maximum norm estimatus. We assume, as usual, that we have

famil% of o:etators -T (W that -aisis the properties listed in (3.1) and
h

the api-roximation a-ssumptir)ns A h'We will also assume that we are working in

d = 1, 2 or 3 sc ace dimensions and that S h C (2,) for some constant 0(<6 <1;

that is, the functions in Share H6lder continuous with exponent 6 on 2

Finally, we will assume the following inverse property on S h

(6.1) 11 <C(Eh N
2 ~ , for C -< 6 and i ESh

C 
h

To obtain maximum norm estimates for the parabolic problem, we need to know some

corresponding estimates for the elliptic problem. We will assume the following:

There is a function Y (h) so that if T(t)f C Wp'" for some 0 < t < t

we have that

(6.2) I(T h T) (t) fII,. -y (h)(Z(t) f 1p

where p = 2 or r

2-r1
We will also assume that y(h) < Ch for some n < 1. Work in [4] or [9] done

2 r

under various conditions suggests that we could take y2(h) =Ch 2, r (h) ch r i

r >2 and Y(h) =Y (h) = C~loq hlh 2if r =2.

We note that these conditions imply the followinq:

lIT II0 11I(T - T)4110 + IITJ)10'h 0,- h 0' 0

'f (h) 11 Tz ,1 + CIIT5II' (hI) , + 1k I
-- 2 2.,-- 2 2 Clo

- (C4r )h -32 C)11);]) pCII:
2

where 0 - < Min -- ~,' and S
1- 2 h
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If we define u h(t) t S hv ia (3.2) with some choice of v h S has usual, then

(4.1) shows that if 0 < t < T

(6.3) Iu(t) - uh (t)I 11, 1 (T - Th ) u~I + 11T Pe~ I

<- y' (h)I11u (t) 11~ + C11e C)(t) 1I

We can now use the results of Section IV to further analyze (6.3) . For instance,

if we have Condition 8 and we set v h = Pv, we find that

(6.4) lu (t) - Uh (t)I1I C (t 0)(y (h) + h r )IIII

for 0 < to < t <T. Other results can also be formulated for sufficiently smooth

and compatible v.

Similar estimates can be done in the interior of Q) if the appropriate estimates

are known for the {T ht)1 family.
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